Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «Комсомольский-на-Амуре государственный университет»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Радиоэлектронное оборудование подвижных объектов

Направление подготовки	11.03.04 Электроника и наноэлектроника
Направленность (профиль) образовательной программы	Промышленная электроника
Квалификация выпускника	бакалавр
Год начала подготовки (по учебному плану)	2019
Форма обучения	заочная
Технология обучения	традиционная

Курс	Семестр	Трудоемкость, з.е.
5	, 9	4

Вид промежуточной аттестации	Обеспечивающее подразделение
Зачет с оценкой	ПЭ

Разработчик рабочей программы Доцент каф. ПЭ, канд. техн. наук	Д.А. Киба « <u>07</u> »
СОГЛАСОВАНО	
Директор библиотеки	<u>И.А.</u> Романовская <u></u>
Заведующий кафедрой « <u>ПЭ</u> »	<u>« 07 » О5</u> Д.А. Киба 20 <u>/</u> 9г.
Декан электротехнического факультета	<u>А.С. Гудим</u> « <u>07</u> » <u>05</u> 20 <u>19</u> г.
Начальник учебно-методического управления	<u>— Д</u> Е.Е. Поздеева « <u>07</u> » <u>05</u> 20 <u>/9</u> г.

1 Общие положения

Рабочая программа дисциплины «Радиоэлектронное оборудование подвижных объектов» составлена в соответствии с требованиями федерального государственного образовательного стандарта, утвержденного приказом Министерства образования и науки Российской Федерации № 927 от 19.09.2017, и основной профессиональной образовательной программы подготовки «Промышленная электроника» по направлению 11.03.04 Электроника и наноэлектроника.

Задачи	изучение электронного оборудования, методов анализа и систематизации
дисциплины	результатов исследований
Основные	Общие сведения о радиоэлектронном оборудовании.
разделы / темы	Система радиосвязи с подвижными объектами.
дисциплины	Распространение электромагнитных волн радиоэлектронного оборудования.
	Методы радионавигационных измерений

2 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с индикаторами достижения компетенций

Процесс изучения дисциплины «Радиоэлектронное оборудование подвижных объектов» направлен на формирование следующих компетенций в соответствии с ФГОС ВО и основной образовательной программой (таблица 1):

Таблица 1 – Компетенции и индикаторы их достижения

Код по ФГОС	Индикаторы достижения	Планируемые результаты обучения по дисциплине
	Общепрофессиональнь	ie
ОПК-2 Способен самостоятельно проводить экспериментальные исследования и использовать основные приемы обработки и представления полученных данных	ОПК-2.1. Знает основные методы и средства проведения экспериментальных исследований, системы стандартизации и сертификации. ОПК-2.2. Умеет выбирать способы и средства измерений и проводить экспериментальные исследования ОПК-2.3. Владеет способами обработки и представления полученных данных и оценки погрешности результатов измерений	Знать основные методы и средства проведения экспериментальных исследований радиоэлектронного оборудования подвижных объектов. Уметь выбирать способы и средства измерений и проводить экспериментальные исследования радиоэлектронного оборудования подвижных объектов Владеть способами обработки и представления полученных данных и оценки погрешности результатов измерений радиоэлектронного оборудования подвижных объектов

3 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина «Радиоэлектронное оборудование подвижных объектов» изучается на 5 курсе(ах) в 9 семестре(ах).

Дисциплина входит в состав блока 1 «Дисциплины (модули)» и относится к обязательной части.

Для освоения дисциплины необходимы знания, умения, навыки и (или) опыт практической деятельности, сформированные в процессе изучения дисциплин / практик: Средства автоматизированных вычислений; Материалы и элементы электронной техники; Метрология и технические измерения; Основы промышленной автоматики и робото-

техники; Производственная практика (технологическая (проектно-технологическая) практика), 3 курс; Основы преобразовательной техники.

Знания, умения и навыки, сформированные при изучении дисциплины «Радиоэлектронное оборудование подвижных объектов», будут востребованы при прохождении итоговой аттестации

Входной контроль не проводится.

4 Объем дисциплины (модуля) в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся

Общая трудоемкость (объем) дисциплины составляет 4 з.е., 144 акад. час. Распределение объема дисциплины (модуля) по видам учебных занятий представлено в таблице 2.

Таблица 2 – Объем дисциплины (модуля) по видам учебных занятий

Объем дисциплины	Всего академи- ческих часов
Общая трудоемкость дисциплины	144
Контактная аудиторная работа обучающихся с преподавателем (по видам учебных занятий), всего	18
В том числе:	
занятия лекционного типа (лекции и иные учебные занятия, предусматривающие преимущественную передачу учебной информации педагогическими работниками)	6
занятия семинарского типа (семинары, практические занятия, практикумы, лабораторные работы, коллоквиумы и иные аналогичные занятия)	12
Самостоятельная работа обучающихся и контактная работа, включающая групповые консультации, индивидуальную работу обучающихся с	
преподавателями (в том числе индивидуальные консультации); взаимодействие в электронной информационно-образовательной среде вуза	122
Промежуточная аттестация обучающихся – Зачет с оценкой	4

5 Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебной работы

Таблица 3 – Структура и содержание дисциплины (модуля)

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	_ ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `			
	Виды учебной работы, включая самостоя-			
	тельную работу обучающихся и трудоем-			
	кость (в часах)			
Наименование разделов, тем и содержание матери-	Контактна	Контактная работа преподавателя		
ала	c	с обучающимися		
	Лекции	Семинарские	Лаборатор-	
		(практиче-	ные заня-	
		ские занятия)	тия	
Раздел 1 Общие сведения о радиоэлектронном				
оборудовании				
Тема 1.1 Задачи изучения дисциплины. Понятие о ра-	0.25			
диоэлектронном оборудовании подвижных объектов	0,25			
Тема 1.2 Виды радиоэлектронного оборудования	0,25			

		ебной работы,		
	тельную работу обучающихся и тру		удоем-	
	кость (в часах)			y - 1
Наименование разделов, тем и содержание матери-	Контактн	ая работа преп	одавателя	CPC
ала		обучающими		
	Лекции	Семинарские	Лаборатор-	
		(практиче-	ные заня-	
		ские занятия)	R ИТ	
Тема 1.3 Классификация систем радиосвязи	0,25			
Тема 1.4 Системы координат	0,25			
Знакомство со средой LabVIEW			1	
Создание спектрального анализатора прямоуголь-			1	
ного импульса			-	
Изучение теоретических разделов дисциплины,				
подготовка к занятиям семинарского типа, подго-				39
товка и оформление расчетно-графической работы				
Раздел 2 Система радиосвязи с подвижными				
объектами				
Тема 2.1 Радиопередающие устройства	0,5			
Тема 2.2 Радиоприёмные устройства	0,5			
Тема 2.3 Эксплуатационные и технические харак-	0,5		<u> </u>	
теристики систем радиосвязи				
Тема 2.4 Чувствительность приемных устройств	0,25			
Тема 2.5 Энергетические характеристики радио-	0.25			
электронных устройств	0,25			
Знакомство с программой RADAR Signal Simulator			1	
с устройством NI USRP-2953R			1	
Цифровое устройство обнаружение пачки коге-			1	
рентных импульсов на фоне пассивных помех			1	
Устройство формирования и согласованной филь-				
трации импульсного сигнала с линейной частотной			1	
модуляцией				
Изучение теоретических разделов дисциплины,				
подготовка к занятиям семинарского типа, подго-				39
товка и оформление расчетно-графической работы				
Раздел 3 Распространение электромагнитных				
волн радиоэлектронного оборудования				
Тема 3.1 Диапазоны радиоволн, используемых в	0.25			
бортовой аппаратуре	0,25			
Тема 3.2 Прямые, поверхностные и простран-	0.25			
ственные радиоволны	0,25			
Тема 3.3 Антенны. Радиолокационные системы.	0,5			
Подключение устройства MyRIO. Подключение	·			
компаса на устройстве NI myRIO			1	
Построение специализированного процессора				
цифровой обработки некогерентной пачки ра-			1	
диоимпульсов обзорной РЛС				
Изучение теоретических разделов дисциплины,				
подготовка к занятиям семинарского типа, подго-				40
товка и оформление расчетно-графической работы				
Раздел 4 Методы радионавигационных измере-				
ний				
*****		1		
Тема 4.1 Методы измерения расстояний	0,25			
Тема 4.1 Методы измерения расстояний	0,25 0,25			

	Виды учебной работы, включая самостоя- тельную работу обучающихся и трудоем- кость (в часах)			
Наименование разделов, тем и содержание материала	Контактная работа преподавателя с обучающимися			CPC
	Лекции	Семинарские (практиче- ские занятия)	Лаборатор- ные заня- тия	
Тема 4.4 Методы измерения путевой скорости летательных аппаратов	0,25			
Тема 4.5 Методы измерения углов ориентации летательных аппаратов	0,25			
Тема 4.6 Методы определения местоположения объектов	0,5			
Тема 4.7 Комплексирование измерителей навигационных параметров	0,25			
Подключение ультразвукового дальномера на устройстве NI myRIO			1	
Подключение трехосного акселерометра на устройстве NI myRIO			1	
Подключение трехосного цифрового гироскопа на устройстве NI myRIO			1	
Разработать компас с поправкой на наклон			1	
Подключение инфракрасного дистанционного дат- чика на устройстве NI myRIO			1	
Изучение теоретических разделов дисциплины, подготовка к занятиям семинарского типа, подготовка и оформление расчетно-графической работы				40
ИТОГО по дисциплине	6	-	12	122

6 Внеаудиторная самостоятельная работа обучающихся по дисциплине (модулю)

При планировании самостоятельной работы студенту рекомендуется руководствоваться следующим распределением часов на самостоятельную работу (таблица 4):

Таблица 4 – Рекомендуемое распределение часов на самостоятельную работу

Компоненты самостоятельной работы	Количество часов
Изучение теоретических разделов дисциплины	104
Подготовка к занятиям семинарского типа	20
Подготовка и оформление Расчетно-графической работы	34
	122

7 Оценочные средства для проведения текущего контроля и промежуточной аттестации обучающихся по дисциплине (модулю)

Таблица 5 – Паспорт фонда оценочных средств

Контролируемые разделы (темы) дисциплины	Формируемая компетенция	Наименование оценочного средства	Показатели оценки
Разделы 1-4	ОПК-2	Тест	Правильность выполнения
			теста
Разделы 1-4	ОПК-2	Лабораторные	Правильность выполнения за-
		работы	дания и аргументированность

			ответов
Разделы 1-4	ОПК-2	Расчетно-	Полнота и правильность вы-
		графическая	полнения работы
		работа	

Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, представлены в виде технологической карты дисциплины (таблица 6).

Таблица 6 – Технологическая карта

	Наименова- ние	Сроки выпол-	Шкала оцени-	Критерии	
	оценочного средства	нения	вания	оценивания	
	9 семестр				
	Пром	ежуточная	ammecmai	ция в форме Зачет с оценкой	
1	Тест	в течение	20 бал-	20 баллов – 91-100 % правильных ответов –	
		семестра	ЛОВ	высокий уровень знаний;	
				15 баллов – 71-90 % правильных ответов –	
				достаточно высокий уровень знаний;	
				10 баллов – 61-70 % правильных ответов –	
				средний уровень знаний;	
				5 баллов – 51-60 % правильных ответов –	
				низкий уровень знаний;	
				0 баллов – 0-50 % правильных ответов –	
				очень низкий уровень знаний.	
2	Лаборатор-	в течение	5 баллов	5 баллов – студент показал отличные навы-	
	ная работа 1	семестра		ки применения полученных знаний и уме-	
3	Лаборатор-	в течение	5 баллов	ний при решении профессиональных задач	
4	ная работа 2	семестра	5	в рамках усвоенного учебного материала.	
4	Лаборатор-	в течение	5 баллов	4 балла – студент показал хорошие навы-	
5	ная работа 3 Лаборатор-	в течение	5 баллов	ки применения полученных знаний и	
	ная работа 4	семестра	Э баллов	умений при решении профессиональных	
6	Лаборатор-	в течение	5 баллов	задач в рамках усвоенного учебного ма-	
	ная работа 5	семестра		териала.	
7	Лаборатор-	в течение	5 баллов	3 балла – студент показал удовле-	
	ная работа 6	семестра		творительное владение навыками приме-	
8	Лаборатор	в течение	5 баллов	нения полученных знаний и умений при	
	ная работа 7	семестра		решении профессиональных задач в рам-	
9	Лаборатор-	в течение	5 баллов	ках усвоенного учебного материала.	
10	ная работа 8	семестра	5 500000	0 баллов – студент продемонстрировал	
10	Лаборатор- ная работа 9	в течение	5 баллов	недостаточный уровень владения умени-	
11	Лабораторная	в течение	5 баллов	ями и навыками при решении профессио-	
11	работа 10	семестра	2 Oalliob	нальных задач в рамках усвоенного учеб-	
12	Лабораторная	в течение	5 баллов	ного материала.	
	работа 11	семестра			
13	Лабораторная	в течение	5 баллов		
	работа 12	семестра			
14	Расчетно-	в течение	20 бал-	20 баллов – студент показал отличные навы-	
	графическая	семестра	ЛОВ	ки применения полученных знаний и умений	
	работа			при решении профессиональных задач в	
				рамках усвоенного учебного материала.	

				15 баллов – студент показал хорошие навыки
				применения полученных знаний и умений
				при решении профессиональных задач в
				рамках усвоенного учебного материала.
				10 баллов – студент показал удовле-
				творительное владение навыками примене-
				ния полученных знаний и умений при реше-
				нии профессиональных задач в рамках усво-
				енного учебного материала.
				0 баллов – студент продемонстрировал недоста-
				точный уровень владения умениями и навыка-
				ми при решении профессиональных задач в
				рамках усвоенного учебного материала.
ИТС	ОГО:	-	100 баллов	-

Критерии оценки результатов обучения по дисциплине:

- 0 64 % от максимально возможной суммы баллов «неудовлетворительно» (недостаточный уровень для промежуточной аттестации по дисциплине);
- 65 74 % от максимально возможной суммы баллов «удовлетворительно» (пороговый (минимальный) уровень);
- 75 84 % от максимально возможной суммы баллов «хорошо» (средний уровень);
- 85-100~% от максимально возможной суммы баллов «отлично» (высокий (максимальный) уровень)

Задания для текущего контроля

Лабораторная работа 1. Знакомство со средой LabVIEW.

Создать простой виртуальный инструмент (VI), конвертирующий температуру из шкалы Фаренгейта в шкалу Цельсия.

Лабораторная работа 2. Создание спектрального анализатора прямоугольного импульса.

В среде LabVIEW создать спектральный анализатор прямоугольного импульса.

Лабораторная работа 3. Знакомство с программой RADAR Signal Simulator с устройством NI USRP-2953R.

Изучить основные компоненты устройства NI USRP-2953R, произвести его подключение к ПК и настройку.

Лабораторная работа 4. Цифровое устройство обнаружение пачки когерентных импульсов на фоне пассивных помех

Характеристики пассивных помех и принципы селекции движущихся целей на фоне этих помех. Изучение структурной схемы когерентно-импульсной РЛС.

Лабораторная работа 5. Устройство формирования и согласованной фильтрации импульсного сигнала с линейной частотной модуляцией.

Исследовать основные характеристики ЛЧМ сигнала (вид сигнала, амплитудный спектр сигнала, закон изменения частоты и фазы в сигнале). Исследовать основные характеристики согласованного фильтра — амплитудно-частотная и импульсная характеристики. Определить коэффициент сжатия при различной длительности ЛЧМ сигнала. Вид выходного сжатого сигнала на промежуточной частоте и на видеочастоте. Определить влияние возможного рассогласования по частоте Доплера (между сигналом и фильтром) на вид выходного сжатого сигнала на промежуточной частоте и на видеочастоте.

Лабораторная работа 6. Подключение устройства MyRIO. Подключение компаса на устройстве NI myRIO.

Изучить автоматический радиокомпас с использованием оборудования NI myRIO и датчика Compass.

Лабораторная работа 7. Построение специализированного процессора цифровой обработки некогерентной пачки радиоимпульсов обзорной РЛС

Изучить принципы построения специализированного процессора цифровой обработки пачки некогерентных радиоимпульсов обзорной РЛС. Измерить технические характеристики и провести экспериментальное исследование характеристик обнаружителя цифрового процессора.

Лабораторная работа 8. Подключение ультразвукового дальномера на устройстве NI myRIO.

Подключить ультразвуковой дальномер к устройству NI myRIO и провести исследование датчика.

Лабораторная работа 9. Подключение трехосного акселерометра на устройстве NI myRIO.

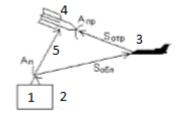
Установить и сконфигурировать устройство для работы с компьютером, используя среду LabVIEW. Создать проект и разработать код виртуального устройства на основе встроенного трехосного акселерометра.

Лабораторная работа 10. Подключение трехосного цифрового гироскопа на устройстве NI туRIO.

Подключить трехосный цифрового гироскоп к устройству NI myRIO и провести исследование датчика.

Лабораторная работа 11. Разработать компас с поправкой на наклон.

Создать поправку на наклон компаса с использованием акселерометра для определения угла к поверхности земли.


Лабораторная работа 12. Подключение инфракрасного дистанционного датчика на устройстве NI myRIO.

Подключить инфракрасный дистанционный датчик к устройству NI myRIO и провести исследование датчика.

TECT

- 1. Радиотехническая система (РТС) это
- а) совокупность средств и приборов, соединенных между собой и предназначенных для целенаправленного выполнения единой задачи или ряда задач, связанных с передачей, извлечением и преобразованием информации;
- б) совокупность оборудования, предназначенных для выполнения задач по приему, сбору и преобразованию информации;
- в) совокупность приборов и датчиков, соединенных между собой для обнаружения сигналов и целесообразного выполнения единой задачи или ряда задач по поиску информации.
- 2. Отметьте, что не относиться к основным электрическим параметрам радиосигналов
 - а) период;
 - б) амплитуда;
 - в) фаза;
 - г) частота.
- 3. Устройство, преобразующее информационное сообщение в радиосигнал
 - а) приемное;
 - б) передающее;
 - в) преобразующее.
- 4. Совокупность аппаратных средств и физической среды, в которой распространяются электромагнитные волны от передатчика к приемнику это...
 - а) канал связи;
 - б) линия пропускания;
 - в) линия связи.
- 5. Функции пилотажно-навигационного комплекса
 - а) управление движением летательных аппаратов;
 - б) управление приборами и датчиками летательных аппаратов;

- в) движение летальных аппаратов.
- 6. Радиосигналы в однородной среде распространяются ...
 - а) обратно пропорционально;
 - б) прямолинейно;
 - в) рассредоточено.
- 7. Отметьте метод, не относящийся к измерению навигационных параметров
 - а) измерение расстояния;
 - б) измерение локального минимума;
 - в) измерения скорости движения объектов;
 - г) измерение угловых координат.
- 8. Что включает в себя активная РТС
 - а) передатчик, приемник;
 - б) антенна, компас;
 - в) приемник, сигнал.
- 9. Укажите соответствие отраженных на рисунке обозначений

- 1) а) передатчик;
- 2) б) ракета;
- 3) в) опорный сигнал;
- 4) г) командный пункт;
- 5) д) цель.
- 10. Напишите название структурной схемы, представленной на рисунке

Расчетно-графическая работа

Моделирование и исследование радиоэлектронного оборудования подвижных объектов из имеющихся наборов датчиков.

8 Учебно-методическое и информационное обеспечение дисциплины (модуля)

8.1 Основная литература

- 1) Скрыпник, О.Н. Радионавигационные системы воздушных судов [Электронный ресурс]: Учебник. М.: ИНФРА-М, 2014. 348 с. // ZNANIUM.COM : электроннобиблиотечная система. Режим доступа: http://znanium.com/bookread2.php?book=399612, ограниченный. Загл. с экрана.
- 2) Тяпкин, В.Н. Методы определения навигационных параметров подвижных средств с использованием спутниковой радионавигационной системы ГЛОНАСС [Электронный ресурс]: монография / В.Н. Тяпкин, Е.Н. Гарин. Красноярск: Сиб. федер. ун-т, 2012. 260 с. // ZNANIUM.COM: электронно-библиотечная система. Режим доступа: http://znanium.com/bookread2.php?book=442662, ограниченный. Загл. с экрана.
- 3) Афонин, А.А. Микропроцессорная техника в приборах, системах и комплексах ориентации, навигации и управления летательных аппаратов [Электронный ресурс] :

учебное пособие к лабораторным работам / А.А. Афонин, Г.Г. Ямашев. – Электрон. текстовые данные. – Саратов: Ай Пи Эр Медиа, 2015. – 143 с. // IPRbooks: электронно-библиотечная система. – Режим доступа: http://www.iprbookshop.ru/40398.html, ограниченный. – Загл. с экрана.

8.2 Дополнительная литература

- 1) Датчики [Электронный ресурс] : справочное пособие / В.М. Шарапов [и др.]. Электрон. текстовые данные. М. : Техносфера, 2012. 624 с. // IPRbooks : электронно-библиотечная система. Режим доступа: http://www.iprbookshop.ru/16974.html, ограниченный. Загл. с экрана.
- 2) Ботов, М. И. Введение в теорию радиолокационных систем [Электронный ресурс] : монография / М. И. Ботов, В. А. Вяхирев, В. В. Девотчак; ред. М. И. Ботов. Красноярск: Сиб. федер. ун-т, 2012. 394 с. // ZNANIUM.COM: электронно-библиотечная система. Режим доступа: http://znanium.com/bookread2.php?book=492976, ограниченный. Загл. с экрана.
- 3) Козлов, В.Г. Техническая эксплуатация радиоэлектронного оборудования [Электронный ресурс] : учебное пособие / В.Г. Козлов. Электрон. текстовые данные. Томск: Томский государственный университет систем управления и радиоэлектроники, Эль Контент, 2012. 133 с. // IPRbooks : электронно-библиотечная система. Режим доступа: http://www.iprbookshop.ru/13988.html, ограниченный. Загл. с экрана.
- 4) Мелихов, С.В. Введение в специальность "Средства связи с подвижными объектами" [Электронный ресурс] : учебное пособие / С.В. Мелихов, И.А. Колесов. Электрон. текстовые данные. Томск: Томский государственный университет систем управления и радиоэлектроники, 2009. 154 с. // IPRbooks : электронно-библиотечная система. Режим доступа: http://www.iprbookshop.ru/13926.html, ограниченный. Загл. с экрана.

8.3 Методические указания для студентов по освоению дисциплины

- 1) Амосов, О.С. Моделирование и исследование цифрового гироскопа с использованием оборудования NI MyRIO и датчика Gyroscope: методические указания к лабораторным работам [Текст] / О.С. Амосов, С.Г. Баена. Комсомольск-на-Амуре: ФГБОУ ВО «КнАГТУ», 2016. 22 с. (Методические указания от кафедры ПЭ 30 экз.).
- 2) Амосов, О.С. Моделирование и исследование цифрового компаса с использованием оборудования MyRIO NI и датчика Compass: методические указания к лабораторным работам [Текст] / О.С. Амосов, С.Г. Баена Комсомольск-на-Амуре: ФГБОУ ВО «КнАГТУ», 2016. 24 с. (Методические указания от кафедры ПЭ 30 экз.).
- 3) Амосов, О.С. Изучение принципов работы и управления в системе вертикального взлета и посадки летательного аппарата с использованием платформы ELVIS NI и тренажера QNET VTOL. Управление по току [Текст]: методические указания к лабораторным работам /сост.: О.С. Амосов, С.Г. Баена. - Комсомольск-на-Амуре: ФГБОУ ВО «КнАГТУ», 2016. – 21 с. (Методические указания от кафедры ПЭ – 30 экз.)
- 4) Моделирование и исследование датчиков и устройств радиоэлектронных и радиотехнических систем: учеб. пособие / Сост. О.С. Амосов, С.Г. Амосова. Комсомольск-на-Амуре: ФГБОУ ВО «КнАГУ», 2018. 135 с.

8.4 Современные профессиональные базы данных и информационные справочные системы, используемые при осуществлении образовательного процесса по дисциплине

- 1) Электронная библиотечная система http://www.znanium.com.
- 2) Электронный портал научной литературы http://www.elibrary.ru.

8.5 Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины (модуля)

- 1) Бортовые радиоэлектронные системы http://repo.ssau.ru
- 2) Система радиосвязи с подвижными объектами http://findpatent.ru>patent
- 3) Система радиосвязи с подвижными объектами http://edrid.ru>rid

8.6 Лицензионное и свободно распространяемое программное обеспечение, используемое при осуществлении образовательного процесса по дисциплине

Таблица 7 – Перечень используемого программного обеспечения

Наименование ПО	Реквизиты / условия использования
Microsoft Imagine Premium	Лицензионный договор АЭ223 №008/65 от 11.01.2019
OpenOffice	Свободная лицензия, условия использования по ссылке:
	https://www.openoffice.org/license.html
NI LabView	Академическая лицензия, договор АЭ44 № 036/51 от
	04.02.2015, Лицензионный диск № 781851-3599

9 Организационно-педагогические условия

Организация образовательного процесса регламентируется учебным планом и расписанием учебных занятий. Язык обучения (преподавания) — русский. Для всех видов аудиторных занятий академический час устанавливается продолжительностью 45 минут.

При формировании своей индивидуальной образовательной траектории обучающийся имеет право на перезачет соответствующих дисциплин и профессиональных модулей, освоенных в процессе предшествующего обучения, который освобождает обучающегося от необходимости их повторного освоения.

9.1 Образовательные технологии

Учебный процесс при преподавании курса основывается на использовании традиционных, инновационных и информационных образовательных технологий. Традиционные образовательные технологии представлены лекциями и семинарскими (практическими) занятиями. Инновационные образовательные технологии используются в виде широкого применения активных и интерактивных форм проведения занятий. Информационные образовательные технологии реализуются путем активизации самостоятельной работы студентов в информационной образовательной среде.

9.2 Занятия лекционного типа

Лекционный курс предполагает систематизированное изложение основных вопросов учебного плана.

На первой лекции лектор обязан предупредить студентов, применительно к какому базовому учебнику (учебникам, учебным пособиям) будет прочитан курс.

Лекционный курс должен давать наибольший объем информации и обеспечивать более глубокое понимание учебных вопросов при значительно меньшей затрате времени, чем это требуется большинству студентов на самостоятельное изучение материала.

9.3 Занятия семинарского типа

Семинарские занятия представляют собой детализацию лекционного теоретического материала, проводятся в целях закрепления курса и охватывают все основные разделы.

Основной формой проведения семинаров является обсуждение наиболее проблемных и сложных вопросов по отдельным темам, а также разбор примеров и ситуаций в аудиторных условиях. В обязанности преподавателя входят: оказание методической помощи и консультирование студентов по соответствующим темам курса.

Активность на семинарских занятиях оценивается по следующим критериям:

- ответы на вопросы, предлагаемые преподавателем;
- участие в дискуссиях;
- выполнение проектных и иных заданий;
- ассистирование преподавателю в проведении занятий.

Ответ должен быть аргументированным, развернутым, не односложным, содержать ссылки на источники.

Доклады и оппонирование докладов проверяют степень владения теоретическим материалом, а также корректность и строгость рассуждений.

Оценивание заданий, выполненных на семинарском занятии, входит в накопленную оценку.

9.4 Самостоятельная работа обучающихся по дисциплине (модулю)

Самостоятельная работа студентов — это процесс активного, целенаправленного приобретения студентом новых знаний, умений без непосредственного участия преподавателя, характеризующийся предметной направленностью, эффективным контролем и оценкой результатов деятельности обучающегося.

Цели самостоятельной работы:

- · систематизация и закрепление полученных теоретических знаний и практических умений студентов;
 - углубление и расширение теоретических знаний;
- · формирование умений использовать нормативную и справочную документацию, специальную литературу;
- · развитие познавательных способностей, активности студентов, ответственности и организованности;
- · формирование самостоятельности мышления, творческой инициативы, способностей к саморазвитию, самосовершенствованию и самореализации;
 - развитие исследовательских умений и академических навыков.

Самостоятельная работа может осуществляться индивидуально или группами студентов в зависимости от цели, объема, уровня сложности, конкретной тематики.

Технология организации самостоятельной работы студентов включает использование информационных и материально-технических ресурсов университета.

Перед выполнением обучающимися внеаудиторной самостоятельной работы преподаватель может проводить инструктаж по выполнению задания. В инструктаж включается:

- цель и содержание задания;
- сроки выполнения;
- ориентировочный объем работы;
- основные требования к результатам работы и критерии оценки;
- возможные типичные ошибки при выполнении.

Инструктаж проводится преподавателем за счет объема времени, отведенного на изучение дисциплины.

Контроль результатов внеаудиторной самостоятельной работы студентов может проходить в письменной, устной или смешанной форме.

Студенты должны подходить к самостоятельной работе как к наиважнейшему средству закрепления и развития теоретических знаний, выработке единства взглядов на отдельные вопросы курса, приобретения определенных навыков и использования профессиональной литературы.

Помещения для самостоятельной работы обучающихся оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду организации.

9.5 Методические указания для обучающихся по освоению дисциплины

При изучении дисциплины обучающимся целесообразно выполнять следующие рекомендации:

- 1. Изучение учебной дисциплины должно вестись систематически.
- 2. После изучения какого-либо раздела по учебнику или конспектным материалам рекомендуется по памяти воспроизвести основные термины, определения, понятия раздела.
- 3. Особое внимание следует уделить выполнению отчетов по практическим занятиям и индивидуальным комплексным заданиям на самостоятельную работу.
- 4. Вся тематика вопросов, изучаемых самостоятельно, задается на лекциях преподавателем. Им же даются источники (в первую очередь вновь изданные в периодической научной литературе) для более детального понимания вопросов, озвученных на лекции.

При самостоятельной проработке курса обучающиеся должны:

- просматривать основные определения и факты;
- · повторить законспектированный на лекционном занятии материал и дополнить его с учетом рекомендованной по данной теме литературы;
- · изучить рекомендованную литературу, составлять тезисы, аннотации и конспекты наиболее важных моментов;
 - самостоятельно выполнять задания, аналогичные предлагаемым на занятиях;
 - использовать для самопроверки материалы фонда оценочных средств.

10 Описание материально-технического обеспечения, необходимого для осуществления образовательного процесса по дисциплине (модулю)

10.1 Учебно-лабораторное оборудование

Таблица 8 — Перечень оборудования лаборатории

Аудитория	Наименование аудитории (лаборатории)	Используемое оборудование
211/3	Лаборатория компьютерного проектирования и моделирования	персональные компьютеры NI myRIO и набор датчиков Mechatronics Kit
306/3	Лаборатория радиоэлектроники	персональные компьютеры устройство NI USRP-2953R

10.2 Технические и электронные средства обучения

При проведении занятий используется аудитория, оборудованная проектором (стационарным или переносным) для отображения презентаций. Кроме того, при проведении лекций и практических занятий необходим компьютер с установленным на нем браузером и программным обеспечением для демонстрации презентаций.

11 Иные сведения

Методические рекомендации по обучению лиц с ограниченными возможностями здоровья и инвалидов

Освоение дисциплины обучающимися с ограниченными возможностями здоровья может быть организовано как совместно с другими обучающимися, так и в отдельных группах. Предполагаются специальные условия для получения образования обучающимися с ограниченными возможностями здоровья.

Профессорско-педагогический состав знакомится с психолого-физиологическими особенностями обучающихся инвалидов и лиц с ограниченными возможностями здоро-

вья, индивидуальными программами реабилитации инвалидов (при наличии). При необходимости осуществляется дополнительная поддержка преподавания тьюторами, психологами, социальными работниками, прошедшими подготовку ассистентами.

В соответствии с методическими рекомендациями Минобрнауки РФ (утв. 8 апреля 2014 г. N АК-44/05вн) в курсе предполагается использовать социально-активные и рефлексивные методы обучения, технологии социокультурной реабилитации с целью оказания помощи в установлении полноценных межличностных отношений с другими студентами, создании комфортного психологического климата в студенческой группе. Подбор и разработка учебных материалов производятся с учетом предоставления материала в различных формах: аудиальной, визуальной, с использованием специальных технических средств и информационных систем.

Освоение дисциплины лицами с OB3 осуществляется с использованием средств обучения общего и специального назначения (персонального и коллективного использования). Материально-техническое обеспечение предусматривает приспособление аудиторий к нуждам лиц с OB3.

Форма проведения аттестации для студентов-инвалидов устанавливается с учетом индивидуальных психофизических особенностей. Для студентов с ОВЗ предусматривается доступная форма предоставления заданий оценочных средств, а именно:

- · в печатной или электронной форме (для лиц с нарушениями опорнодвигательного аппарата);
- · в печатной форме или электронной форме с увеличенным шрифтом и контрастностью (для лиц с нарушениями слуха, речи, зрения);
 - методом чтения ассистентом задания вслух (для лиц с нарушениями зрения).

Студентам с инвалидностью увеличивается время на подготовку ответов на контрольные вопросы. Для таких студентов предусматривается доступная форма предоставления ответов на задания, а именно:

- · письменно на бумаге или набором ответов на компьютере (для лиц с нарушениями слуха, речи);
- · выбором ответа из возможных вариантов с использованием услуг ассистента (для лиц с нарушениями опорно-двигательного аппарата);
 - устно (для лиц с нарушениями зрения, опорно-двигательного аппарата).

При необходимости для обучающихся с инвалидностью процедура оценивания результатов обучения может проводиться в несколько этапов.